1. Preliminaries of dependent case
 - Case assigned by a dedicated head vs. configurational view
 - NOM/ACC alignment vs. ERG/ABS alignment

 - Two case studies:
 - Agreement in Hindi
 - Agreement in Nepali
 - How to account for the data with a configurational view of case.
Different theories of Case

• The Case Theory we have seen so far: two main components

1. Case is assigned by dedicated heads in a Spec-head or Comp-head configuration.

(1) a. \(\text{TP} \)

\(\text{NP} \)

\(T \)

\(T' \)

\(\text{VP} \)

\(\ldots \)

\(\text{NOM} \)

b. \(\text{VP} \)

\(V_{\text{trans}} \)

\(\text{NP} \)

\(\text{ACC} \)

2. Case is responsible for nominal licensing.

Case Filter

*\([\text{NP}_{[-\text{Case}]}]\) (i.e. NPs must be assigned Case).
Different theories of Case

- The Case Theory we have seen so far: two main components
 1. Case is assigned by **dedicated heads** in a Spec-head or Comp-head configuration.

\[(1) \quad \begin{array}{c}
\text{NP} \\ \downarrow \\
T_{\text{FIN}} \\
\text{NOM} \\
\text{TP} \\
\downarrow \\
T' \\
\downarrow \\
\text{VP} \\
\ldots
\end{array} \quad \quad \begin{array}{c}
\text{VP} \\
\downarrow \\
V_{\text{trans}} \\
\downarrow \\
\text{NP} \\
\text{ACC}
\end{array}\]

2. Case is responsible for nominal licensing.

Case Filter

*\[\text{NP}_{[-\text{Case}]}\] (i.e. NPs must be assigned Case).
Different theories of Case

- The Case Theory we have seen so far: two main components

 1. Case is assigned by **dedicated heads** in a Spec-head or Comp-head configuration.

 (1) a. $TP \quad NP \quad T' \quad T_{FIN} \quad VP \quad \ldots$

 b. $VP \quad V_{trans} \quad NP \quad ACC$

 2. Case is responsible for nominal licensing.

Case Filter

*[$NP_{[–Case]}$] (i.e. NPs must be assigned Case).
• A different theory: *configurational view of case assignment*. Main differences:

1. Case is not assigned by a dedicated head.
2. Case is not responsible for nominal licensing.
• A different theory: **configurational view of case assignment**. Main differences:
 1. Case is not assigned by a dedicated head.
 2. Case is not responsible for nominal licensing.
• A different theory: **configurational view of case assignment.** Main differences:

1. Case is not assigned by a dedicated head. The case a DP surfaces with is a function of the environment where it occurs.
2. Case is not responsible for nominal licensing.
Case assignment algorithm

1. Assign idiosyncratic lexical and inherent cases.
2. Take the remaining DPs within the smallest finite TP. If DP α c-commands DP β, assign dependent case either to DP α (ERG) or to DP β (ACC). This directionality is parameterized.
3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
Case assignment algorithm

1. Assign idiosyncratic lexical and inherent cases.

2. Take the remaining DPs within the smallest finite TP. If DP α c-commands DP β, assign dependent case either to DP α (ERG) or to DP β (ACC). This directionality is parameterized.

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
(2) Faatu read the book.

\[
\text{TP} \\
\text{DP}_\alpha \\
\text{Faatu} \\
\text{T}_{\text{FIN}} \\
\text{VP} \\
\text{V} \quad \text{read} \\
\text{DP}_\beta \\
\text{the book} \\
\text{[Case: ___]}
\]
(2) Faatu read the book.
Faatu read the book.

\[
\begin{array}{c}
\text{TP} \\
\text{DP}_\alpha \\
\text{Faatu} \\
\text{[Case: NOM]} \\
\text{T}' \\
\text{VP} \\
\text{V} \\
\text{read} \\
\text{DP}_\beta \\
\text{the book} \\
\text{[Case: ACC]}
\end{array}
\]
What if there is lexical case?

(3)

Possessive constructions in Mongolian

a. Dulmaa-d shine baishin baigaa.
 Dulmaa-DAT new house COP.PRES
 ‘Dulmaa has a new house.’

b. Tüün-đ*_{i/j} Dorj-ii_{i} nom baigaa.
 3SG-DAT Dorj-GEN book COP.PRES
 ‘He/She has Dorj’s book.’

c. Sharlovan(*-g) Bat-id carrot(*-ACC) baigaa.
 Bat-DAT COP.PRES
 ‘Bat has a carrot.’
Properties of possessive constructions in Mongolian:

- Possessor: marked with DAT.
- Possessum: morphologically unmarked, necessarily (*ACC).
- Possessor c-commands possessum.
(3a’) Dulmaa-d shine baishin baigaa.

Dulmaa-DAT new house COP.PRES

‘Dulmaa has a new house.’

(3a’) Dulmaa-d shine baishin baigaa.
Dulmaa-DAT new house COP.PRES

‘Dulmaa has a new house.’
(3a’) Dulmaa-d shine baishin baigaa.
Dulmaa-DAT new house COP.PRES
‘Dulmaa has a new house.’
Dulmaa-d shine baishin baigaa.
‘Dulmaa has a new house.’
(3a’) Dulmaa-d shine baishin baigaa.
Dulmaa-DAT new house COP.PRES
‘Dulmaa has a new house.’

```
(3a’) Dulmaa-d shine baishin baigaa.
Dulmaa-DAT new house COP.PRES
‘Dulmaa has a new house.’
```
Case assignment algorithm

1. Assign idiosyncratic lexical and inherent cases.

2. Take the remaining DPs within the smallest finite TP. If DP α c-commands DP β, assign dependent case either to DP α (ERG) or to DP β (ACC). This directionality is parameterized.

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
Case assignment algorithm

1. Assign idiosyncratic lexical and inherent cases.

2. Take the remaining DPs within the smallest finite TP. If DP α c-commands DP β, assign dependent case either to DP α (ERG) or to DP β (ACC). This directionality is parameterized.

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
(4) Koryak

γəm-nan t-ə-nu-ne-w ʔəvən?-u.

‘I ate berries.’

\[
\begin{align*}
\text{TP} &\quad \text{T}_\text{FIN} \\
\text{DP}_\alpha &\quad \text{I} & \text{VP} &\quad \text{DP}_\beta \\
&\quad \text{[Case: __]} & &\quad \text{berries} & \text{[Case: __]} \\
&\quad \text{ate} & &\quad \text{_} \\
\end{align*}
\]
(4) Koryak

γǝm-nǝn t-ǝ-nu-ne-w ?ǝvǝn?-u.
‘I ate berries.’

\[\text{I ate berries.} \]
(4) *Koryak*

\[\text{I ate berries.} \]

\[\text{TP} \]

\[\text{DP}_\alpha \]

\[\text{I} \]

\[\text{[Case: ERG]} \]

\[\text{T}_\text{FIN} \]

\[\text{T'} \]

\[\text{VP} \]

\[\text{ate} \]

\[\text{DP}_\beta \]

\[\text{berries} \]

\[\text{[Case: ABS]} \]
What if there is lexical case?

(5) a. kajŋ-a Ø-peŋŋ-ə-nen ?əɬve-ʔəl
 ‘The bear attacked the wild reindeer.’

b. kajŋ-ə-n Ø-peŋŋ-e ?əɬva-ŋ.
 ‘The bear attacked the wild reindeer.’

 Int.: ‘The bear attacked the wild reindeer.’
Taking stock

• So far: the basic workings of a configurational account of case assignment for NOM/ACC and ERG/ABS languages.

• Coming up: case-sensitive agreement and how this case theory accounts for the observed patterns.
• So far: the basic workings of a configurational account of case assignment for NOM/ACC and ERG/ABS languages.

• Coming up: case-sensitive agreement and how this case theory accounts for the observed patterns.
• An empirical generalization:

(6) Moravcsik Hierarchy

Subject > Object > Indirect Object > Adverb

• Bobaljik (2008): this hierarchy can be restated in terms of the categories in the case assignment algorithm:

(7) Revised Moravcsik Hierarchy

Unmarked Case > Dependent Case > Lexical/Oblique Case
• An empirical generalization:

(6) **Moravcsik Hierarchy**

Subject > Object > Indirect Object > Adverb

• Bobaljik (2008): this hierarchy can be restated in terms of the categories in the case assignment algorithm:

(7) **Revised Moravcsik Hierarchy**

Unmarked Case > Dependent Case > Lexical/Oblique Case
(8)

a. **niina** bacce-ko uthaayegii.
 \(\text{Nina}. \text{FEM} \text{ child-ACC} \text{ lift.FUT.FEM} \)
 ‘Nina will pick the child up.’

b. **Raam-ne** RoTii khaayii thii.
 \(\text{Ram-ERG.MASC} \text{ bread.FEM} \text{ eat.PERF.FEM} \text{ be.PAST.FEM} \)
 ‘Ram had eaten bread.’

c. **siitaa** kelaa khaatii thii.
 \(\text{Sita}. \text{FEM} \text{ banana.MASC} \text{ eat.IMPERF.FEM} \text{ be.PAST.FEM} \)
 ‘Sita (habitually) ate bananas.’

d. **siitaa-ne** laRkii-ko dekhaa.
 \(\text{Sita-ERG.FEM} \text{ girl-ACC.FEM} \text{ see.PERF.MASC} \)
 ‘Sita saw the girl.’
(9) Hindi φ-agreement generalization

i. If the subject does not bear a case marker \rightarrow agree with the subject.

ii. Otherwise: if the object does not bear a case marker \rightarrow agree with the object.

iii. Otherwise: use masculine singular default agreement.
• All the verbs in (8) are transitive (i.e. they all have an agentive subject and a patient/theme object.)

• Is it compatible with the Moravcsik Hierarchy?

(6) Moravcsik Hierarchy

Subject > Object > Indirect Object > Adverb
• All the verbs in (8) are transitive (i.e. they all have an agentive subject and a patient/theme object.)

• Is it compatible with the Moravcsik Hierarchy?

(6) Moravcsik Hierarchy

Subject > Object > Indirect Object > Adverb
• All the verbs in (8) are transitive (i.e. they all have an agentive subject and a patient/theme object.)

• Is it compatible with the Moravcsik Hierarchy?

(6) **Moravcsik Hierarchy**

\[Subject > Object > Indirect Object > Adverb \]

• No, there is a mismatch between the grammatical function of the DP agreed with and agreement.
• All the verbs in (8) are transitive (i.e. they all have an agentive subject and a patient/theme object.)

• Is it compatible with the Moravcsik Hierarchy?

(6) **Moravcsik Hierarchy**

\[
\text{Subject} > \text{Object} > \text{Indirect Object} > \text{Adverb}
\]

• No, there is a mismatch between the grammatical function of the DP agreed with and agreement.

• What agreement in Hindi targets is unmarked DPs, irrespective of grammatical function.
• All the verbs in (8) are transitive (i.e. they all have an agentive subject and a patient/theme object.)

• Is it compatible with the Moravcsik Hierarchy?

\[(6) \quad \text{Moravcsik Hierarchy} \]

Subject > Object > Indirect Object > Adverb

• No, there is a mismatch between the grammatical function of the DP agreed with and agreement.

• What agreement in Hindi targets is unmarked DPs, irrespective of grammatical function.

\[(10) \quad \text{Unmarked Case} > \text{Dependent Case} > \text{Lexical/Oblique Case} \]

Hindi
(11) a. ma yas pasal-mā patrikā kin-ch-u.
1SG.NOM DEM.OBL store-LOC newspaper.NOM buy-NPT.1SG
‘I buy the newspaper in this store.’

b. maile yas pasal-mā patrikā kin-ē /
1SG.ERG DEM.OBL store-LOC newspaper.NOM buy-PT.1SG /
*kin-yo
*buy-PT.3SG.M
‘I bought the newspaper in this store.’
Where there are two nominative NPs in a Nepali clause, agreement is with the higher argument, just as in Hindi. Unlike in Hindi, however, there is no agreement with nominative objects. Instead, the verb agrees with the ergative A-argument.
Nepali φ-agreement generalization

Where there are two nominative NPs in a Nepali clause, agreement is with the higher argument, just as in Hindi. Unlike in Hindi, however, there is no agreement with nominative objects. Instead, the verb agrees with the ergative A-argument.

Unmarked Case > Dependent Case > Lexical/Oblique Case
Nepali: what if there is lexical case?

(14) mal tim man par-ch-au / *parch-u.
1SG.DAT 2MH.NOM liking occur-NPT-2MH / *occur-NPT.1SG
‘I like you.’
Take-home message

• As we are going to see in class, a configurational view of case assignment can buy us a few things.
• This recitation: it provides a natural way to capture the relationship between case and agreement.
Take-home message

• As we are going to see in class, a configurational view of case assignment can buy us a few things.
• This recitation: it provides a natural way to capture the relationship between case and agreement.

