Introduction to Syntax: 24.951

Dependent case

Suzana Fong
sznfong@mit.edu

October, 2020
Case assigned by dedicated heads

A configurational view of case assignment
- Case and licensing: NOM objects in Icelandic
- Burzio’s and ERG generalizations

Three studies
- Sakha
- Finnish
- Koryak
1 Case assigned by dedicated heads

2 A configurational view of case assignment
 - Case and licensing: NOM objects in Icelandic
 - Burzio’s and ERG generalizations

3 Three studies
 - Sakha
 - Finnish
 - Koryak
• The Case Theory we have seen: Case assigned by **dedicated heads** (e.g. T_{FIN}, V_{trans}, P, and complementizer *for*).

(1) *NOM and ACC case assignment*: Faatu read the book.

```
TP
  /\       \\
 / \     / \    \
DP  T'   VP
  |     |
Faatu [Case: ___]
  |     |
  T_{\text{FIN}}
    |         |
  T_{\text{trans}} read
  |     |
    VP
      /\   /\  \\
      / \ / \    \\n     DP  the book [Case: ___]
```
Case assigned by dedicated heads

- The Case Theory we have seen: Case assigned by dedicated heads (e.g. T_{FIN}, V_{trans}, P, and complementizer for).

(1) *NOM and ACC case assignment*: Faatu read the book.

```
TP
  /\      \\
 /   \     \     \\
/     \     /     \\
DP     T'   VP
    /\   /\   /\   /
   /  \ /  \ /  \ /
  Faatu T_{\text{FIN}} V_{\text{trans}} DP
     [Case: NOM] [Case: nom] [Case: ___]
```

Faatu read the book.
Case assigned by dedicated heads

- The Case Theory we have seen: Case assigned by dedicated heads (e.g. T_{FIN}, V_{trans}, P, and complementizer for).

(1) *Nom and acc case assignment*: Faatu read the book.
Exceptional Case Marking: I believe her to be the best candidate for the job.
(2) *Exceptional Case Marking*: I believe her to be the best candidate for the job.
(2) Exceptional Case Marking: I believe her to be the best candidate for the job.
1 Case assigned by dedicated heads

2 A configurational view of case assignment
 - Case and licensing: NOM objects in Icelandic
 - Burzio’s and ERG generalizations

3 Three studies
 - Sakha
 - Finnish
 - Koryak
• Dependent case theory: case is not assigned by dedicated functional heads. Rather, it is a function of the relationship between DPs within a given syntactic domain.

• The assignment of case follows this algorithm:
A configurational view of case assignment

- Dependent case theory: case is not assigned by dedicated functional heads. Rather, it is a function of the relationship between DPs within a given syntactic domain.

- The assignment of case follows this algorithm:
Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - to DP α (erg) (“upwards dependent case”) or
 - to DP β (acc) (“downwards dependent case”).

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
• The DPs in the smallest finite that have not been assigned any case are said to be **case competitors**.

• NB: for *convenience*, I am glossing over vP/VP (a potential domain of case assignment) and the VP-internal subject hypothesis.
• The DPs in the smallest finite that have not been assigned any case are said to be case competitors.
• NB: for convenience, I am glossing over vP/VP (a potential domain of case assignment) and the VP-internal subject hypothesis.
1. Assign lexical and inherent cases.

 \[PP/VP/XP \ P/V/X \ \text{DP}[\text{Case: LEX}] \]

2. Assign dependent case to remaining DPs.

 \[\text{TP \ domain of case assignment} \]

 \[\text{DP}_\alpha \quad T' \quad \text{VP} \]
 \[\text{DP}_\beta \quad \text{T}_{\text{FIN}} \quad [\text{Case: ___}] \]

3. Assign unmarked case to DPs that have not been assigned case so far.
1. Assign lexical and inherent cases.

 \[(3) \quad [PP/VP/XP \quad P/V/X \quad DP_{[\text{Case: LEX}]}]\]

2. Assign dependent case to remaining DPs.

 \[(4) \quad \text{TP} \quad \textit{domain of case assignment}\]

 \[
 \begin{array}{c}
 \text{TP} \\
 \text{DP}_\alpha \\
 \text{[Case: __]}
 \end{array}
 \begin{array}{c}
 \text{T'} \\
 \text{T}_{FIN} \\
 \text{VP}
 \end{array}
 \begin{array}{c}
 \text{V} \\
 \text{DP}_\beta \\
 \text{[Case: __]}
 \end{array}
 \]

3. Assign unmarked case to DPs that have not been assigned case so far.
1. Assign lexical and inherent cases.

 (3) \([\text{PP/VP/XP} \ P/V/X \ \text{DP}_{\text{Case: LEX}}]\)

2. Assign dependent case to remaining DPs.

 (4) \(\text{TP domain of case assignment}\)

3. Assign unmarked case to DPs that have not been assigned case so far.
1. Assign lexical and inherent cases.

\[(3) \quad [PP/VP/XP \ P/V/X \ \text{DP}_{\text{Case: LEX}}]\]

2. Assign dependent case to remaining DPs.

\[(4) \quad \text{TP \ domain of case assignment}\]

\[
\begin{array}{c}
\text{TP} \\
\uparrow \\
\text{DP}_\alpha \\
\quad \text{[Case: NOM]} \\
\quad \text{T'} \\
\quad \uparrow \\
\quad T_{\text{FIN}} \\
\quad \text{VP} \\
\quad \downarrow \\
\quad \text{V} \\
\quad \text{DP}_\beta \\
\quad \text{[Case: ACC]} \\
\end{array}
\]

3. Assign unmarked case to DPs that have not been assigned case so far.
(1’) *nom and acc case assignment*: Faatu read the book.

```
(1') NOM and ACC case assignment: Faatu read the book.

TP  domain of case assignment
    /\    
   DPα  T'
  /  \   /
Faatu TFIN
  /  
[Case: __ ]

T'   VP
   /\  /
  V  DPβ
 /   /
read the book
[Case: __ ]
```
(1') nom and acc case assignment: Faatu read the book.

```
TP
   /\  domain of case assignment
  /   \
DP_α  T'
  |    |
  Faatu T_FIN
      |     VP
      |  /  \
      V  DP_β
      read the book
      [Case: ACC]
```
(1′) **NOM and ACC case assignment:** Faatu read the book.

```
TP  domain of case assignment
    /
   /  
DP_α  T'
    /
   /  
Faatu  T_FIN
        /
     /  
[Case: NOM]  VP
    /
   /  
V  DP_β
   /
read  the book
    /
[Case: ACC]
```
(2') *Exceptional Case Marking*: I believe her to be the best candidate for the job.

\[
\begin{aligned}
\text{TP} & \quad \text{domain of case assignment} \\
\text{DP} & \\
I & \quad \text{T'} \\
\text{[Case: __]} & \quad \text{T}_{\text{FIN}} \\
\text{VP} & \\
\text{V}_{\text{trans}} & \text{believe} \\
\text{TP} & \quad \text{NOT domain of case assignment} \\
\text{DP} & \\
\text{her} & \quad \text{T'} \\
\text{[Case: __]} & \quad \text{T} \\
\text{VP} & \quad \text{to} \quad \text{be the best} \ldots
\end{aligned}
\]
(2') *Exceptional Case Marking*: I believe her to be the best candidate for the job.

\[
\text{Exceptional Case Marking: I believe her to be the best candidate for the job.}
\]

\[
\text{(2') Exceptional Case Marking: I believe her to be the best candidate for the job.}
\]

\[
(2') \quad \text{*Exceptional Case Marking*: I believe her to be the best candidate for the job.}
\]

\[
\begin{align*}
\text{TP} & \quad \text{domain of case assignment} \\
\text{DP} & \quad \text{T'} \\
\text{I} & \quad \text{[Case: __]} \\
& \quad \text{T_{FIN}} \\
& \quad \text{VP} \\
& \quad \text{V_{trans}} \\
& \quad \text{believe} \\
\text{DP} & \quad \text{T'} \\
\text{her} & \quad \text{[Case: ACC]} \\
& \quad \text{T} \\
& \quad \text{to} \\
& \quad \text{be the best . . .}
\end{align*}
\]

\[
\begin{align*}
\text{(2') Exceptional Case Marking: I believe her to be the best candidate for the job.}
\end{align*}
\]
(2’) *Exceptional Case Marking*: I believe her to be the best candidate for the job.

```
(2’) I believe [Case: NOM] her to be the best candidate for the job.
```

[Diagram of a syntactic tree with the structure of the sentence and the case marking indicated, with 'domain of case assignment' and 'NOT domain of case assignment' annotations.]
• Recall: for convenience, I am only considering a finite TP as a domain of case assignment.

• But, in a ECM construction, what would happen to a lower object (e.g. I believe her to have won a prize)?
• Recall: for *convenience*, I am only considering a finite TP as a domain of case assignment.
• But, in a ECM construction, what would happen to a lower object (e.g. *I believe her to have won a prize*)?
In a theory of case assignment where case is assigned by a dedicated head, case is also responsible for licensing an NP.

Case Filter

*\([NP_{[-\text{Case}]})\] (i.e. NPs must be assigned Case).

- Dependent case theory: case is the morphology a nominal appears with depending on the configuration where it is and, crucially, the presence/absence of another case competitor in that configuration.
- Case is not responsible for licensing.
• In a theory of case assignment where case is assigned by a dedicated head, case is also responsible for licensing an NP.

Case Filter

*[NP[–Case]] (i.e. NPs must be assigned Case).

• Dependent case theory: case is the morphology a nominal appears with depending on the configuration where it is and, crucially, the presence/absence of another case competitor in that configuration.

• Case is not responsible for licensing.
• In a theory of case assignment where case is assigned by a dedicated head, case is also responsible for licensing an NP.

Case Filter

*[NP\text{[–Case]}] (i.e. NPs must be assigned Case).

• Dependent case theory: case is the morphology a nominal appears with depending on the configuration where it is and, crucially, the presence/absence of another case competitor in that configuration.

• Case is not responsible for licensing.
• Icelandic: certain verbs can assign lexical DAT to their subject.

(5) Henni leiðist bókin sín.
 she.DAT bores the.book.NOM self’s
 ‘She finds her (own) book boring.’

• Correlated property: object is NOM and it is agreed with by the verb.
• Icelandic: certain verbs can assign lexical DAT to their subject.

(5) Henni leiðist bókin sín.
 she.DAT bores the.book.NOM self’s
 ‘She finds her (own) book boring.’

• Correlated property: object is NOM and it is agreed with by the verb.
But: how do we know that the preverbal DP is a subject?

(6)
 a. A Maria parece [___ ter visto ___ a Ana].
 the Maria seems [___ have.INF see.PTC the Ana]
 ‘Maria seems to have seen Ana.’
 b. * A Ana parece [___ a Maria ter visto ___].
 the Ana seems [___ the Maria have.INF see.PTC ___]
 Lit.: ‘Ana seems Maria to have seen.’

(7)
 a. A Maria tentou [PRO ver ___ a Ana].
 the Maria tried [___ see.INF the Ana]
 ‘Maria tried to see Ana.’
 b. * A Ana tentou [___ a Maria ver ___ PRO].
 the Ana seems [___ the Maria see.INF ___]
 Lit.: ‘Ana tried Maria to see.’
But: how do we know that the preverbal DP is a subject?

(6) a. A Maria parece [_ ter vist o a Ana].
the Maria seems [_ have.INF see.PTC the Ana]
‘Maria seems to have seen Ana.’

b. * A Ana parece [a Maria _ ter vist o _].
the Ana seems [the Maria have.INF see.PTC _]
Lit.: ‘Ana seems Maria to have seen.’

(7) a. A Maria tentou [PRO ver a Ana].
the Maria tried [see.INF the Ana]
‘Maria tried to see Ana.’

b. * A Ana tentou [a Maria ver PRO].
the Ana seems [the Maria see.INF]
Lit.: ‘Ana tried Maria to see.’
But: how do we know that the preverbal DP is a subject?

(6)

a. A Maria parece [__ ter visto a Ana].
the Maria seems [__ have.INF see.PTC the Ana]
‘Maria seems to have seen Ana.’

b. * A Ana parece [a Maria ter visto __].
the Ana seems [the Maria have.INF see.PTC __]
Lit.: ‘Ana seems Maria to have seen.’

(7)

a. A Maria tentou [PRO ver a Ana].
the Maria tried [see.INF the Ana]
‘Maria tried to see Ana.’

b. * A Ana tentou [a Maria ver PRO].
the Ana seems [the Maria see.INF]
Lit.: ‘Ana tried Maria to see.’

Raising and control target subjects.
(8) Henni virðist [___ hafa leiðst bókin ___].
 she.DAT seems [___ have bored the.book.NOM ___]
 ‘She seems to find the book boring.’

(9) Hún vonast til [að PRO leiðast ekki bókin ___].
 she.NOM hopes for [to PRO\textsubscript{DAT} bore not the.book.NOM ___]
 ‘She hopes not to find the book boring.’

• The DAT argument of leiðst is targeted by raising and control
(8) Henni virðist [___ hafa leiðst bókin].
She.DAT seems [have bored the.book.NOM]
‘She seems to find the book boring.’

(9) Hún vonast til [að PRO leiðast ekki bókin].
She.NOM hopes for [to PRODAT bore not the.book.NOM]
‘She hopes not to find the book boring.’

• The DAT argument of leiðst is targeted by raising and control
(10) a. Jóni líkuðu þessir sokkar.
Jon.DAT like.PL these socks.NOM
‘Jon likes these socks.

b. Jon vonast til [að PRO líka þessi bók].
Jon.NOM hopes for [to PRO_{DAT} like this book.NOM]
‘Jon hopes to like this book.’

c. * María vonast til [að PRO líka Jóni].
Maria.NOM hopes for [to PRO_{NOM} like Jon.DAT
Int.: ‘Maria hopes that John likes her.’

• (10c) is similar to *Ana tried Maria to see PRO.
• In (10a), NOM object agrees with the verb. Maybe T_{FIN} licenses it.
(10)

a. Jóni líkuðu þessir sokkar.
Jon.DAT like.PL these socks.NOM
‘Jon likes these socks.’

b. Jon vonast til [að PRO lika þessi bók].
Jon.NOM hopes for [to PRO
DAT like this book.NOM]
‘Jon hopes to like this book.’

c. * María vonast til [að PRO lika Jóni].
Maria.NOM hopes for [to PRO
NOM like Jon.DAT
Int.: ‘Maria hopes that John likes her.’

• (10c) is similar to *Ana tried Maria to see PRO.
• In (10a), NOM object agrees with the verb. Maybe T_{FIN} licenses it.
(10)

a. Jóni líkuðu þessir sokkar.
Jon.DAT like.PL these socks.NOM
‘Jon likes these socks.’

b. Jon vonast til [að PRO lika þessi bók].
Jon.NOM hopes for [to PRO\textsubscript{DAT} like this book.NOM]
‘Jon hopes to like this book.’

c. * María vonast til [að PRO lika Jóni].
Maria.NOM hopes for [to PRO\textsubscript{NOM} like Jon.DAT
Int.: ‘Maria hopes that John likes her.’

• (10c) is similar to *Ana tried Maria to see PRO.
• In (10a), NOM object agrees with the verb. Maybe T\textsubscript{FIN} licenses it.
• How to account for the DAT/NOM pattern in (5)?

(5) Henni leiðist bókin sín.
 she.DAT bores the.book.NOM self’s.NOM
 ‘She finds her (own) book boring.’

• What each case theory has to say:
 ▶ Case assigned by dedicated head: finite T in Icelandic is able to assign NOM to an object.
 ▶ Dependent case:
• How to account for the DAT/NOM pattern in (5)?

(5) Henni leiðist bókin sín.
 she.DAT bores the.book.NOM self’s.NOM
 ‘She finds her (own) book boring.’

• What each case theory has to say:
 ▶ Case assigned by dedicated head: finite T in Icelandic is able to assign NOM to an object.
 ▶ Dependent case:
• How to account for the DAT/NOM pattern in (5)?

(5) Henni leiðist bókin sín.
 she.DAT bores the.book.NOM self’s.NOM
 ‘She finds her (own) book boring.’

• What each case theory has to say:
 ▶ Case assigned by dedicated head: finite T in Icelandic is able to assign NOM to an object.
 ▶ Dependent case: NOM is unmarked case.
(11) Case assigned by dedicated head
(11) Case assigned by dedicated head

```
TP
   /\   
  /   
DP   T'  VP
  |   |  |  |  |
Henni TFIN   Vtrans  bókin sín
     [Case: DAT]     [Case: ___]
     /\                /\         |
    /  
   DAT leiðist

[Case: dat]
```
(11) **Case assigned by dedicated head**

```
TP
  /\         /
DP  T'       VP
  /\     /\    /
Henni T_FIN V_trans DP
     /\    /\       [Case: NOM]
    [Case: DAT] leiðist bókin sín
```

```
[Case: NOM]
NOM
```
(12) **Dependent case**

```
TP
  /\      /
DP    T'
     /\    /
Henni TFIN
    /\  /\  
  [Case: ___] TFIN
     /\   /
    VP  DP
        /\   /
       Vtrans leiðist bókin sín
        [Case: ___]
```
(12) Dependent case

```
(12) Dependent case

TP
  /   \     
DP   T'     VP
     /   \   /   \   /   \  
Henni T_FIN V_{trans} DP  
     \            [Case: DAT]  
         \                  [Case: ___]  
             \            
               DAT
```

```
Henni
[Case: DAT]
```

```
leiðist
```

```
bókin sín
[Case: ___]
```
(12) **Dependent case**

```
(12) Dependent case

TP
  / \ 
/     \ 
DP     T'
   /     \
  Henni   TFin
     [Case: DAT]  
     

VP
  /   \ 
/     \ 
Vtrans  DP
  /   \
leiðist bókin sín
     [Case: NOM]
  
```
• Are the two theories empirically equivalent? Source of NOM:
 1. Case assigned by a dedicated head: finite T.
 2. Dependent case: unmarked case.
• Prediction: what would happen if leiðist is in an embedded nonfinite TP?
• Are the two theories empirically equivalent? Source of NOM:
 1. Case assigned by a dedicated head: finite T.
 2. Dependent case: unmarked case.
• Prediction: what would happen if leiðist is in an embedded nonfinite TP?
• Are the two theories empirically equivalent? Source of NOM:
 1. Case assigned by a dedicated head: finite T.
 2. Dependent case: unmarked case.
• Prediction: what would happen if leiðist is in an embedded nonfinite TP?
Ég tel [henni hafa leiðst bókin].
'I believe [she.DAT have bored the.book.NOM]
'I believe her to have found the book boring.'

1. Case assigned by a dedicated head: NOM not expected in the embedded nonfinite clause because T is not finite.
2. Dependent case: NOM is expected as long as there is no case competitor.
(13) Êg tel [henni hafa leiðst bókin].
 I believe.1SG [she.DAT have bored the.book.NOM]
 ‘I believe her to have found the book boring.’

1. Case assigned by a dedicated head: NOM not expected in the embedded nonfinite clause because T is not finite.

2. Dependent case: NOM is expected as long as there is no case competitor.
(13) Ég tel [henni hafa leiðst bókin].
I believe.1SG [she.DAT have bored the.book.NOM]
‘I believe her to have found the book boring.’

1. Case assigned by a dedicated head: NOM not expected in the embedded nonfinite clause because T is not finite.
 ▶ Maybe nonfinite T in Icelandic is able to assign NOM too?

2. Dependent case: NOM is expected as long as there is no case competitor.
(14) a. Hún séa myndina sína.
 she N O M saw the picture A C C self’ s A C C
 ‘She saw her (own) picture.’

 b. Ég tel [hana hafa séð myndina].
 I b e l i e v e . 1 S G [she A C C h a v e s e e n t h e p i c t u r e A C C]
 ‘I believe her to haave seen the picture.’
Taking stock

• **Data we looked at:** DAT > NOM in Icelandic.

• For the basic cases, the two theories of case assignment we are examining can account for the data, though their explanation for NOM is quite different.

• Preservation of NOM in infinitival clauses is supposed to break the tie.

• Crucially, the NOM object was licensed without agreement with T_{FIN}.
• Data we looked at: DAT > NOM in Icelandic.
• For the basic cases, the two theories of case assignment we are examining can account for the data, though their explanation for NOM is quite different.
• Preservation of NOM in infinitival clauses is supposed to break the tie.
• Crucially, the NOM object was licensed without agreement with T_{FIN}.
• Data we looked at: DAT > NOM in Icelandic.

• For the basic cases, the two theories of case assignment we are examining can account for the data, though their explanation for NOM is quite different.

• Preservation of NOM in infinitival clauses is supposed to break the tie.

• Crucially, the NOM object was licensed without agreement with T_{FIN}.
• Data we looked at: DAT > NOM in Icelandic.

• For the basic cases, the two theories of case assignment we are examining can account for the data, though their explanation for NOM is quite different.

• Preservation of NOM in infinitival clauses is supposed to break the tie.

• Crucially, the NOM object was licensed without agreement with T_{FIN}.

Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - ▶ to DP α (ERG) (“upwards dependent case”) or
 - ▶ to DP β (ACC) (“downwards dependent case”).

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).

• Why justifies putting together ACC and ERG? Why do we think they form a natural class?
Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - to DP α (ERG) ("upwards dependent case") or
 - to DP β (ACC) ("downwards dependent case").

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).

- Why justifies putting together ACC and ERG? Why do we think they form a natural class?
Burzio’s and \textit{ERG} generalizations

Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - to DP α (\textit{ERG}) (“upwards dependent case”) or
 - to DP β (\textit{ACC}) (“downwards dependent case”).

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (\textit{ABS} or \textit{NOM}).

- Why justifies putting together \textit{ACC} and \textit{ERG}? Why do we think they form a natural class?
Burzio’s and ERG generalizations

(15) a. Charlie petted the dog.
b. The dog was petted.
c. * It was petted the dog.

(16) a. The student arrived.
b. * It arrived the student.

(17) Burzio’s Generalization: correlation between the lack of assignment of a θ-role to a subject and the failure of assignment of ACC to object.
A similar generalization holds of ERG:

(18) Hindi

a. niina bacce-ko uthaayegii.
Nina.FEM child-ACC lift.FUT.FEM
‘Nina will pick the child up.’

b. Raam-ne RoTii khaayii thii.
Ram-ERG.MASC bread.FEM eat.PERF.FEM be.PAST.FEM
‘Ram had eaten bread.’

c. siitaa-ne laRkii-ko dekhaa.
Sita-ERG.FEM girl-ACC.FEM see.PERF.MASC
‘Sita saw the girl.’

d. siita / *siita-ne aayii.
Sita.FEM.ABS / *Sita.FEM-ERG arrived.PERF.FEM
‘Sita arrived.’
A similar generalization holds of ERG:

\[(18) \quad \text{Hindi}\]

a. niina bacce-ko uthaayegii.
 Nina.FEM child-ACC lift.FUT.FEM
 ‘Nina will pick the child up.’

b. Raam-ne RoTii khaayii thii.
 Ram-ERG.MASC bread.FEM eat.PERF.FEM be.PAST.FEM
 ‘Ram had eaten bread.’

c. siitaa-ne laRkii-ko dekhaa.
 Sita-ERG.FEM girl-ACC.FEM see.PERF.MASC
 ‘Sita saw the girl.’

d. siita / *siita-ne aayii.
 Sita.FEM.ABS / *Sita.FEM-ERG arrived.PERF.FEM
 ‘Sita arrived.’
(19) **ERG Generalization:** correlation between the lack of assignment of a θ-role to an object and the failure of assignment of ERG to subject.

(17) **Burzio’s Generalization:** correlation between the lack of assignment of a θ-role to a subject and the failure of assignment of ACC to object.

- What is there is common between these generalizations?
(19) **ERG Generalization:** correlation between the lack of assignment of a θ-role to an object and the failure of assignment of ERG to subject.

(17) **Burzio’s Generalization:** correlation between the lack of assignment of a θ-role to a subject and the failure of assignment of ACC to object.

• What is there in common between these generalizations?
(19) **ERG Generalization:** correlation between the lack of assignment of a \(\theta \)-role to an object and the failure of assignment of \textit{ERG} to subject.

(17) **Burzio’s Generalization:** correlation between the lack of assignment of a \(\theta \)-role to a subject and the failure of assignment of \textit{ACC} to object.

- What is there is common between these generalizations?
(19) **ERG Generalization:** correlation between the lack of assignment of a θ-role to an object and the failure of assignment of ERG to subject.

(17) **Burzio’s Generalization:** correlation between the lack of assignment of a θ-role to a subject and the failure of assignment of ACC to object.

- What is there is common between these generalizations? Assignment of ACC and ERG are correlated with the presence of another argument.
Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - to DP α (ERG) (“upwards dependent case”) or
 - to DP β (ACC) (“downwards dependent case”).

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
Disjunctive Case Hierarchy

1. Assign idiosyncratic lexical cases.

2. Take the remaining DPs in the smallest finite TP that have not been assigned case yet. If DP α c-commands DP β, assign dependent case:
 - to DP α (erg) (“upwards dependent case”) or
 - to DP β (acc) (“downwards dependent case”).

3. If a DP was not assigned case in the previous two steps, then assign it unmarked case (ABS or NOM).
Taking stock

- So far: the mechanics of a configurational view of case assignment.
- Dissociation between case and licensing (Icelandic).
- Why ERG and ACC agree grouped together.
- Coming up: case studies.
Taking stock

- So far: the mechanics of a configurational view of case assignment.
- Dissociation between case and licensing (Icelandic).
- Why ERG and ACC agree grouped together.
- Coming up: case studies.
Taking stock

• So far: the mechanics of a configurational view of case assignment.
• Dissociation between case and licensing (Icelandic).
• Why ERG and ACC agree grouped together.
• Coming up: case studies.
• So far: the mechanics of a configurational view of case assignment.
• Dissociation between case and licensing (Icelandic).
• Why ERG and ACC are grouped together.
• Coming up: case studies.
1 Case assigned by dedicated heads

2 A configurational view of case assignment
 - Case and licensing: NOM objects in Icelandic
 - Burzio’s and ERG generalizations

3 Three studies
 - Sakha
 - Finnish
 - Koryak
Two phenomena in Sakha:

1. ACC in passives
2. “Hyper ECM”
ACC in passives

(20) a. Min oloppoh aldjat-ty-m.
 I.NOM chair-ACC break-PAST-1S
 ‘I broke the chair.’

 cup.NOM / *cup-ACC break-PAST.3SS
 ‘The cup broke.’

 cup.NOM / cup-ACC break-PASS-PAST.3SS
 ‘The cup was broken.’

• Not only nom is possible in passives; so is acc.
ACC in passives

(20) a. Min oloppoh aldjat-ty-m.
 I.NOM chair-ACC break-PAST-1S
 ‘I broke the chair.’

 cup.NOM / *cup-ACC break-PAST.3S
 ‘The cup broke.’

 cup.NOM / cup-ACC break-PASS-PAST.3S
 ‘The cup was broken.’

• Not only nom is possible in passives; so is acc.
 cup.NOM intentionally hammer-INSTR break-PASS-PAST.3SS
 ‘The cup was intentionally broken with a hammer.’

 cup-ACC intentionally hammer-INSTR break-PASS-PAST.3SS
 ‘The cup was intentionally broken with a hammer.’

 • NOM is no longer a possibility when agent-oriented expressions are added.
(21)

 cup.NOM intentionally hammer-INSTR break-PASS-PAST.3SS
 ‘The cup was intentionally broken with a hammer.’

 cup-ACC intentionally hammer-INSTR break-PASS-PAST.3SS
 ‘The cup was intentionally broken with a hammer.’

- NOM is no longer a possibility when agent-oriented expressions are added.
• Assumption: the licensing of agent-oriented expressions like *intentionally* and instrumentals require the syntactic presence of an agent, even if null.

 ▶ Call this element ‘$\text{PRO}_{\text{agent}}$’.
 ▶ ‘$\text{PRO}_{\text{agent}}$’ can count as a case competitor, but it does not have φ-features.
• Assumption: the licensing of agent-oriented expressions like *intentionally* and instrumentals require the syntactic presence of an agent, even if null.
 ▶ Call this element ‘PRO_{agent}’.
 ▶ ‘PRO_{agent}’ can count as a case competitor, but it does not have φ-features.
(21b′) Caakky-ny sorujan ötüje-nen aldjan-ylyn-na.
cup-ACC intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’
(21b') Caakky-ny sorujan ötğe-nen aldjan-ylyn-na. cup-ACC intentionally hammer-INSTR break-PASS-PAST.3sS
'The cup was intentionally broken with a hammer.'
"The cup was intentionally broken with a hammer."
What about passives where the passivized object is NOM?

(20c) Caakky / Caakky-ny aldjan-yllyn-na.
cup.NOM / cup-ACC break-PASS-PAST.3sS
‘The cup was broken.’

(21a) *Caakky sorujan ötüje-nen aldjan-yllyn-na.
cup.NOM intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’
What about passives where the passivized object is NOM?

(20c) Caakky / Caakky-ny aldjan-yllyn-na.
cup.NOM / cup-ACC break-PASS-PAST.3SS
‘The cup was broken.’

(21a) *Caakky sorujan ötüje-nen aldjan-yllyn-na.
cup.NOM intentionally hammer-INSTR break-PASS-PAST.3SS
‘The cup was intentionally broken with a hammer.’

No \(PRO_{agent} \) or other case competitor.

⇒ Only unmarked case (NOM) available for cup.
What about the theory where case is assigned by dedicated heads?

(21) a.* Caakky sorujan ötüje-nen aldjan-ylyn-na.
cup.NOM intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

cup-ACC intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

These two sentences are identical, except for the case of the passivized object (i.e. same heads).

In order to account for (21b), we would need to postulate a v_{PASS} (homophonous with the head -ylyn) that is able to assign ACC and which assign a θ-role to $\textit{PRO}_{\text{agent}}$.
What about the theory where case is assigned by dedicated heads?

cup.NOM intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

cup-ACC intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

These two sentences are identical, except for the case of the passivized object (i.e. same heads).

In order to account for (21b), we would need to postulate a \(v_{\text{PASS}} \) (homophonous with the head -ylyn) that is able to assign ACC and which assign a \(\theta \)-role to \(PRO_{\text{agent}} \).
What about the theory where case is assigned by dedicated heads?

cup.NOM intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

cup-ACC intentionally hammer-INSTR break-PASS-PAST.3sS
‘The cup was intentionally broken with a hammer.’

These two sentences are identical, except for the case of the passivized object (i.e. same heads).

In order to account for (21b), we would need to postulate a \(\nu_{PASS} \) (homophonous with the head -ylyn) that is able to assign ACC and which assign a \(\theta \)-role to \(PRO_{agent} \).
(22) Min ehigi / ehigi-ni bugün kyaj-yax-xyt dien erem-mit-im.
I you.nom / you-acc today win-2ps that hope-ptpl-1ss
‘I hoped that you would win today.’

(23) a. Min [kim-i daqany]_{NPI} kyaj-ba-ta dien
I [who-acc prt] win-NEG-PAST.3ss that
eren-e-bin.
hope-aor-1ss
‘I hope that nobody won (the lottery).’

b. *Min [kim-ıe daqany]_{NPI} [CP kel-bet dien]
I [who-dat prt] [come-NEG-AOR.3ss that]
et-ti-m.
tell-PAST-1ss
Lit.: ‘I told anyone that he should not come.’
(22) Min ehigi / ehigi-ni bugün kyaj-yax-xyt dien erem-mit-im.
I you.NOM / you-ACC today win-2pS that hope-PTPL-1sS
‘I hoped that you would win today.’

(23) a. Min [kim-i daqany]_{NPI} kyaj-ba-ta dien
I [who-ACC PRT] win-NEG-PAST.3sS that
eren-e-bin.
hope-AOR-1sS
‘I hope that nobody won (the lottery).’

b. *Min [kim-ɾe daqany]_{NPI} [CP kel-bet dien]
I [who-DAT PRT] [come-NEG-AOR.3sS that]
et-ti-m.
tell-PAST-1sS
Lit.: ‘I told anyone that he should not come.’
• Background: why are the NPI sentences (23) relevant?

(24) a. Jaimie doesn’t have any money.
 b. Jaimie has any money.

• NPI = word/phrase that can only occur in a sentence if accompanied by some local (clause-mate) licenser like negation.
• **Background:** why are the NPI sentences (23) relevant?

(24)
 a. Jaimie doesn’t have any money.
 b. Jaimie has any money.

• **NPI** = word/phrase that can only occur in a sentence if accompanied by some local (clause-mate) licenser like negation.
• Background: why are the NPI sentences (23) relevant?
 (24) a. Jaimie doesn’t have any money.
 b. * Jaimie has any money.

• NPI = word/phrase that can only occur in a sentence if accompanied by some local (clause-mate) licenser like negation.
(23) a. Min [kim-i daqany]_{NPI} kyaj-ba-ta dien
 I [who-ACC PRT] win-NEG-PAST.3sS that
 hope-AOR-1sS
 ‘I hope that nobody won (the lottery).’

 b. * Min [kim->e daqany]_{NPI} [CP kel-bet dien]
 I [who-DAT PRT] [come-NEG-AOR.3sS that]
 tell-PAST-1sS
 Lit.: ‘I told anyone that he should not come.’
(23) a. Min [kim-i daqany]_{NPI} kyaj-ba-ta dien
 I [who-ACC PRT] win-NEG-PAST.3ss that
 hope-AOR-1ss
 ‘I hope that nobody won (the lottery).’

b. * Min [kim-ʁe daqany]_{NPI} [CP kel-bet dien]
 I [who-DAT PRT] [come-NEG-AOR.3ss that]
 et-ti-m.
 tell-PAST-1ss
 Lit.: ‘I told anyone that he should not come.’

• Relevance of (23): the ACC subject (an NPI) must have occupied a
 position in the embedded clause where it was licensed by embedded
 negation.
• How to account for the data?
 1. Dedicated head: the matrix verb (or v) is able to assign ACC to the embedded subject.
 2. Dependent case: the matrix subject can be a case competitor for the embedded subject.

• Something in common between the two analyses: a matrix element (verb or subject) is able to access the embedded subject, across the finite CP.
• How to account for the data?
 1. Dedicated head: the matrix verb (or v) is able to assign ACC to the embedded subject.
 2. Dependent case: the matrix subject can be a case competitor for the embedded subject.

• Something in common between the two analyses: a matrix element (verb or subject) is able to access the embedded subject, across the finite CP.
• The ACC subject has to be base-generated inside the embedded CP (cf. NPI data (23)) and also be accessible to a matrix element.

• Recall the following data:

 (25)
 a. Which side of herself did Mary say [CP that John was proud of]?
 b. Which side of himself did John say [CP that Fred liked]?
• The ACC subject has to be base-generated inside the embedded CP (cf. NPI data (23)) and also be accessible to a matrix element.

• Recall the following data:

 (25) a. Which side of herself did Mary say [CP that John was proud of]?

 b. Which side of himself did John say [CP that Fred liked]?
• The ACC subject has to be base-generated inside the embedded CP (cf. NPI data (23)) and also be accessible to a matrix element.

• Recall the following data:

 (25)
 a. Which side of herself did Mary say [_{CP} that John was proud of]?
 b. Which side of himself did John say [_{CP} that Fred liked]?

• Spec-CP of a finite CP is a position that is accessible to a matrix element (e.g. a binder).
 ▶ Minimally, the ACC subject in Sakha occupies Spec-CP (in both analyses).
• The ACC subject has to be base-generated inside the embedded CP (cf. NPI data (23)) and also be accessible to a matrix element.

• Recall the following data:

 (25)
 a. Which side of herself did Mary say [CP that John was proud of]?
 b. Which side of himself did John say [CP that Fred liked]?

• Spec-CP of a finite CP is a position that is accessible to a matrix element (e.g. a binder).

 ▶ Minimally, the ACC subject in Sakha occupies Spec-CP (in both analyses).
(22) Min _ehigi_ / _ehigi-ni_ bugün kyaj-yax-xyt dien erem-mit-im.
 ‘I hoped that you would win today.’

1. Dedicated head:

 (26) I hope [CP _you_ [Case:] that [TP __ would win today]]

2. Dependent case:

 (27) I [Case:] hope [CP _you_ [Case:] that [TP __ would win today]]
(22) Min ehigi / ehigi-ni bugün kyaj-yax-xyt dien erem-mit-im.
I you.NOM / you-ACC today win-2PS that hope-PTPL-1SS
‘I hoped that you would win today.’

1. Dedicated head:

 (26) I hope [CP you[Case: _] that [TP ___ would win today]]

2. Dependent case:

 (27) I[Case: _] hope [CP you[Case:] that [TP ___ would win today]]
(22) Min ehigi / ehigi-ni bugün kyaj-yax-xyt dien erem-mit-im.
I you.NOM / you-ACC today win-2PS that hope-PTPL-1SS
‘I hoped that you would win today.’

1. Dedicated head:

(26) I hope [CP you[Case: ACC] that [TP __ would win today]]

2. Dependent case:

(27) I[Case:] hope [CP you[Case:] that [TP __ would win today]]
(22) Min ehigi / ehigi-ni bugün kyaj-yax-xyt dien erem-mit-im.
 I you.NOM / you-ACC today win-2PS that hope-PTPL-1SS
 ‘I hoped that you would win today.’

1. Dedicated head:

 (26) I hope [CP you[Case: ACC] that [TP __ would win today]]

2. Dependent case:

 (27) I[Case: _] hope [CP you[Case: _] that [TP __ would win today]]
(22) Min **ehigi** / **ehigi-ni** bugün kyaj-yax-xyt dien erem-mit-im.
I you.NOM / you-ACC today win-2PS that hope-PTPL-1SS
‘I hoped that you would win today.’

1. Dedicated head:

(26) I hope [CP you[Case: ACC] that [TP ___ would win today]]

2. Dependent case:

(27) I[Case: _] hope [CP you[Case: ACC] that [TP ___ would win today]]
• So far, the two theories make equivalent predictions about the hyper-ECM in Sakha.

(28) a. Sargy kim-i daqany tönn-üm-üö dien
 Sargy who-ACC PRT return-NEG-FUT.3sS that
erenner-ilin-ne.
promise-PASS-PAST-3sS
 ‘Sargy was promised that nobody would return.’

b. Keskil Aisen-y kel-bet dien
 Keskil Aisen-ACC come-NEG.AOR.3sS that
xomoj-do.
become.sad-PAST.3sS
 ‘Keskil became sad that Aisen is not coming.’
• So far, the two theories make equivalent predictions about the hyper-ECM in Sakha.

(28)
 a. Sargy \textbf{kim-i daqany tönn-üm-üö dien}
 Sargy who-ACC PRT return-NEG-FUT.3sS that
 erenner-ilin-ne.
 promise-PASS-PAST.3sS
 ‘Sargy was promised that nobody would return.’

 b. Keskil \textbf{Aisen-y kel-bet dien}
 Keskil Aisen-ACC come-NEG.AOR.3sS that
 xomoj-do.
 become.sad-PAST.3sS
 ‘Keskil became sad that Aisen is not coming.’
• In these data, the matrix verb is unaccusative or passivized, neither of which is able to assign ACC.

(29)
 a. I believe her to be best candidate for the job.
 b. She is believed ___ to be the best candidate for the job.
 c. * It is believed her to be the best candidate for the job.

(30)
 a. * It seems [her to be the best candidate for the job].
 b. She seems [___ to be the best candidate for the job].

• A theory where case is assigned by a dedicated head wouldn’t be able to account for (28) because there is no dedicated head that can assign ACC in these sentences.
• In these data, the matrix verb is unaccusative or passivized, neither of which is able to assign ACC.

(29) a. I believe her to be best candidate for the job.
 b. She is believed ___ to be the best candidate for the job.
 c. * It is believed her to be the best candidate for the job.

(30) a. * It seems [her to be the best candidate for the job].
 b. She seems [___ to be the best candidate for the job].

• A theory where case is assigned by a dedicated head wouldn’t be able to account for (28) because there is no dedicated head that can assign ACC in these sentences.
(28) a. Sargy **kim-i daqany** tönn-üm-üö dien Sargy who-ACC PRT return-NEG-FUT.3sS that erenner-ilin-ne.
promise-PASS-PAST.3sS
‘Sargy was promised that nobody would return.’

b. Keskil **Aisen-y kel-bet** dien Keskil Aisen-ACC come-NEG.AOR.3sS that xomoj-do.
become.sad-PAST.3sS
‘Keskil became sad that Aisen is not coming.’

• But there is a case competitor for the embedded subject.
(28) a. Sargy **kim-i daqany** tönn-üm-üö dien
 Sargy who-ACC PRT return-NEG-FUT.3sS that
erenner-ilin-ne.
promise-PASS-PAST-3sS
‘Sargy was promised that nobody would return.’

b. Keskil **Aisen-y kel-bet** dien
 Keskil Aisen-ACC come-NEG.AOR.3sS that
xomoj-do.
become.sad-PAST.3sS
‘Keskil became sad that Aisen is not coming.’

• But there is a case competitor for the embedded subject.
(28) a. **Sargy** kim-i daqany tönn-üm-üö dien Sargy who-ACC PRT return-NEG-FUT.3sS that erenner-ili-ne. promise-PASS-PAST.3sS ‘Sargy was promised that nobody would return.’

b. **Keskil** Aisen-y kel-bet dien Keskil Aisen-ACC come-NEG.AOR.3sS that xomoj-do. become.sad-PAST.3sS ‘Keskil became sad that Aisen is not coming.’

> But there is a **case competitor** for the embedded subject.
(28a) **Sargy** kim-i **daqany** tönń-üm-üö dien
targy who-ACC PRT return-NEG-FUT.3SS that
erenner-ilin-ne.
promise-PASS-PAST-3SS
‘Sargy was promised that nobody would return.’

(31) **Sargy**[Case: _] was promised [CP **nobody**[Case: _] that [TP __ would return]]
(28a) **Sargy** *kim-i* **daqany** tönn-üm-üö dien
Sargy who-ACC PRT return-NEG-FUT.3sS that
erennen-ilin-ne.
promise-PASS-PAST-3sS
‘Sargy was promised that nobody would return.’

(31) **Sargy**[Case: _] was promised [CP **nobody**[Case: ACC] that [TP __ would return]]
We reviewed two phenomena in Sakha:

1. ACC in passives: $\text{PRO}_{\text{agent}}$ (motivation: agent-oriented adverb and instrumental) acted as a case competitor for the passivized object.
2. “Hyper ECM”: ACC in embedded subject even in passives and unaccusatives.
[see handout]

